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The approximate factorisation technique for solving the potential flow equation is studied 
and a condition is derived for determining the form the factorisation should take in a 
transformed coordinate system. An extension of this scheme to compute transonic flow by 
solving the nonconservative form of the potential equation is described. Several results are 
then presented for the calculation of transonic lifting flow over an aerofoil. The convergence 
of the approximate factorisation algorithm described in this paper is compared with the 
corresponding behaviour of a successive line overrelaxation method for the identical flow 
problem. The improvement in convergence rate shown by these numerical comparisons 
indicates that approximate factorisation can achieve converged results between five and ten 
times faster than the successive line overrelaxation methods hitherto used to compute potential 
flow. 

INTRODUCTION 

Successive line overrelaxation has proved to be a reliable if somewhat slow method 
for obtaining numerical solutions of the compressible potential equation. The use of 
mesh refinement does speed convergence but there are still many examples for which 
relaxation requires a considerable number of iterations. This is indicated by the 
length of time. taken to reach the final converged values of various flow charac- 
teristics (e.g., shock position, shock strength and, in the case of a lifting aerofoil, the 
circulation). The belief that if should be possible to solve such problems more 
quickly has stimulated the development of several techniques aimed at achieving a 
significant improvement in the convegence rate. Extrapolation [ 11, for example, has 
been successful in accelerating the convergence of relaxation for some flow problems 
but is apparently limited to those cases where a dominant eigenvalue can be 
extracted. Methods based on the Poisson solver 121 have been proposed but these do 
not attain the required improvement in convergence rate for transonic flows with 
strong shocks. By combining a Poisson solver with a relaxation method, Jameson 13 ] 
has overcome this limitation and achieved fast convergence for the lifting aerofoil 
problem. This particular approach, however, is still limited to a narrow range of 
problems, typically those two dimensional problems for which the computing mesh 
can be obtained by a conformal transformation. 

Approximate factorisation has now emerged as a particularly promising candidate 

O(j21-9991;‘H1/070001-19502.00/0 
Copyright C 1981 by Academi: Prca. Inc. 

.4!1 rights oi reproduction in any fwn revved. 



2 TlMOTHYJ.BAKER 

for speeding up flow calculations. The work of Ballhaus et al. 141 showed that this 
technique can achieve substantial improvements in the convergence rates of two 
dimensional transonic small perturbation (TSP) calculations when compared with the 
corresponding relaxation solutions. This success encouraged the expectation that a 
similar improvement could be forthcoming for other flow problems and recent 
progress by Holst [S, 61 has led to the development of a very successful algorithm for 
the full potential equation. His method has proved to be extremely effective and rapid 
convergence has been obtained for a range of difficult flow conditions. 

Holst’s version of the AF2 factorisation was developed for the conservative form of 
the full potential equation. In principle, the same factorisation could be used to solve 
the potential equation in nonconservative form. It seems plausible, though, that an 
alternative factorisation specifically tailored to the quasilinear equation should be 
more suitable for this purpose. Work aimed at solving the nonconsevative form of the 
potential equation by an approximate factorisation technique has let! to the 
development of a factorisation known as AF3 (71. Although this factorisation was 
obtained independently of Holst’s work, it is essentially the same as his AF2 scheme 
when applied to incompressible flow. For compressible flow and particularly in their 
treatment of supersonic regions, these two schemes differ. 

In this paper we first develop some general results relating to schemes of the AF2 
or AF3 type. This leads to a discussion of the form the factorisation should take 
under different coordinate transformations. Finally, the extension of the AF3 
algorithm for computing transonic flow is described and several results are presented 
for the calculation of transonic lifting flow over an aerofoil. 

APPROXIMATE FACTORISATIOS SCHEMES 

We start by considering the general iterative scheme 

where L is a finite difference operator such that L$r,j represents a finite difference 
approximation to the partial differential equation we wish to solve. We call Ldy,j the 
residual after cycle n. As an example we take Laplace’s equation 

and form the usual second order accurate central difference approximation 
-- -..- 

L#Y, j = ( g + %) @lj. (2) 

The second order central difference operator 8x s’, has been formed by a combination 
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of the first order forward and backward difference operators in the x direction. These 
are defined by 

Kxtiij=9i+l.j-dfj~ 

SL, 4i.j = $ij- #i-*.j* 

We define the correction vector for cycle n + 1 as 

which can be interpreted as a forward difference operator if one considers the 
iteration cycles as steps in artificial time. If we make this identification then Eq. (I) 
can be regarded as a finite difference approximation to a time dependent equation. 
The operator N has to be selected so that the iterative scheme is stable and the 
residual on the right hand side of Eq. (1) is driven towards zero as quickly as 
possible. In terms of the time dependent analogy this means that we wish to approach 
the steady state solution as quickly as possible. It has been shown 14) that N should 
closely resemble the operator L in order to achieve convergence is as few iterations as 
possible. On the other hand, N should have a fairly simple form and be easy to invert 
in order to keep the computation time for one iteration cycle reasonably low. Approx- 
imate factorisation schemes seek a compromise between these two conflicting 
requirements by splitting N into a number of simple factors 

N= N,N2 ..’ Nk. 

As an example of this idea we consider the following ADI or AFl scheme 

where the residual on the right hand side is given by Eq. (2). If we write a = 2/Af. the 
difference scheme (3) can be regarded as a second order accurate finite difference 
approximation to the parabolic equation 

The presence of the 0, term has the effect of damping any transient solutions and thus 
helps to ensure that the iterative scheme (3) is convergent. If, however, we consider 
the solution of an equation which is hyperbolic in character then it can be shown 181 
that the 4, term has a destabilising effect. Its presence allows solutions that increase 
exponentially with time and these would quickly swamp the desired steady state 
solution. It follows that the ADI or AFI schemes, although very efficient for so!ving 
elliptic and parabolic equations, are not suitable for the solution of an equation of 
mixed type. Since we are interested in solving the potential equation which is of 
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mixed type in a transonic flow condition, we need an alternative factorisation that 
does not-give rise to a 4, term in the associated time dependent equation. 

If instead of the AFI scheme (3) we split one of the second order central difference 
operators between the two factors, we obtain a factorisation of the AF2 or AF3 type 
[4-71. For example, splitting in the y coordinate direction leads to the scheme 

(4) 

where we again assume that the residual is given by Eq. (2). The time dependent 
equation associated with this iterative scheme now has the desired property of 
containing no #, term. 

Without loss of generaIity we assume that 

Ax=Ay=h. 

A von Neumann analysis shows that the iterative scheme (4) is stable and that the 
sequence of acceleration parameters, 

a = 2 sin ph/2 

h ’ 
p=l ; ... -1 (5) 

approximately minimises the amplification factor. This analysis holds for a uniform 
Cartesian mesh but under a transformation to a stretched coordinate system the 
conclusion is no longer valid. It is then necessary to modify either the parameter 
sequence (5) or preferably the form of the factorisation (4) in order to attain fast 
convergence on a stretched mesh. This observation was brought to the author’s 
attention by Dr. Catherall who has successfully applied approximate factorisation to 
calculate transonic flow over an aerofoil on a non-aligned mesh 191, (i.e., a mesh in 
which the body surface is not aligned with any particular coordinate line). 

Consider the effect of introducing a coordinate transformation to a new set of 
orthogonal curvilinear coordinates X(x, ,v) and Y(x, ~7) and write 

c, T&x + C24,Y (6) 

for the second order derivative terms that then appear in Laplace’s equation. In place 
of the factorisation (4) we consider the general form 

& & & 
-aA,z-A,- 

AX* )( 

where A,, A,, B, and B, are functions of X and Y which satisfy the conditions 

A,B, =C, and A,B, = C, (8) 

but are otherwise arbitrary. 
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We now seek a relationship between these four coefficients that will achieve the 
most rapid convergence. The von Neumann analysis that we use is only strictly 
correct when the coefftcients are constant. However, we assume that the variation is 
small over distances of the order of a mesh width and hence that the analysis is 
approximately valid locally. 

Let the error after the nth iterative cycle be expressed as 

e” = x p”( p, q) eiPXe’“’ 

P.9 

and consider the effect of scheme (7) on the particular error component 
corresponding to the frequency pair (p, q). Again we assume that AX = AY= h and 
write 

s = sin PV 
P 

h/2 
and ep = pQ. 

We find that the amplification factor is 

n-1 

G(p,q)-c= 
-ia’A,B,S,e, + iA,B,S,Siez 

P” (A,$ - iA,aS,e,)(B,a t iB,S,e,“) ’ 

After dividing through by A, B, and writing A = AZ/A,, B = BJB,, the following 
expression is obtained: 

Si[a4A2 - 2a*ABSi cos qh + B2Si] 

lG”= [Sz + haAS:Si + a2A2Si]laz t haBS: +B2Sil’ (9) 

The combination 

is a constant for the purposes of our stability analysis. For the case 

A,=B,=A,=B,=l 

we know from (5) that the choice a = (S,j approximately minimises 1 G(p, q)i’. If we 
substitute this value of a into (9) we then obtain 

S;S;[A’ - 2AB cos qh + B2j 

lGi2= [S;+Ah)S,~S;+A2S;]~S;+Bh~S&S;tBZS~] (10) 

for the square modulus of the amplification factor corresponding to the genera! 
scheme (7). 
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It can readily be seen that an inappropriate choice of the coefficients A,, A,, B, 
and B, can cause slow convergence. For example, if we take the extreme case 

A2 B 
-9192 
A, B, 

in expression (10) we find that 

!GJ - 1. 

It follows that a transformation from Cartesian coordinates to a stretched coordinate 
system can have an adverse effect on the convergence rate of an approximate 
factorisation scheme. 

We now determine the relationship between A and B which will minimise ICI2 
subject to the constraint that AB is constant. Expression (10) is symmetric in A and 
B and our problem can be restated as finding the minimum of the function 

l-(x) = g(x) 
r(x) Wx) ’ 

where 

r(x) = ax2 + bx t c 

and 

g(x) = x2 - 2kp + k2/x2, cl< 1. 

To obtain the above expression the substitutions 

k=AB, x=A, 

a=Si, b=hlS,IS~~ c = s; 

have been made. 
Now 

r,(x) = g’(x) dx)4Vx) - &W(x) Wx) - k/x2 r’(k/x) 4x1 j 
TV r(k/x)2 

with g’(x) = 2x(1 - k2/x4) and r’(x) = 2ux + 6. When x = 4 we obtain g’(p) = 0 
and hence 

I’(l+,Lc) = 0. 

Thus T(x) has a stationary value at the point x = fi. To determine whether this is a 
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minimum we evaluate the second derivative F(x) at x = fi and obtain the following 
expression: 

The point x = 4 will be a minimum if this expression is positive. That is, if 

g”(G) r(G)* > 2g(&)[r(Jj;) Y(\/is) - rJ(fi)* + r(G) ry&)/&j. 

Now g”(G) = 8 and g(d) = 2k(l -p) < 4k. It follows that the above inequality 
holds if 

r(G)* > k(r(&) r’)(G) - r’(d)* + r(fi) r’(\/ir)/&]. (11) 

On expanding out the terms on the right hand side we find that 

klr($) r”(@) - r’(\/i;)’ + r(&) r’(\/k/fi/ 

= abk$ + 4ack t bcfi. 

But 

r(G)’ = (ak t b 4 + c)’ 

ZZ a*k* t Zabk& + b*k + 2ack + 2bc si + c* 

= (ak - c)’ t 2abk& t b2k + 4ack t 2bcfi 

which is certainly greater than the right hand side of (11). It follows that inequality 
(11) is satisfied and hence P(d) > 0. Thus, the value x = fi minimises the 
function T(x). 

In other words the amplification factor is minimised by the choice 

A2 B2 :’ c, -=-= 
A, B, \: c, . 

On making the substitution A = B in expression (10) corresponding to an optimum 
coefficient choice (12), we find that 

‘Gi = 
h (S,J S;A 

S;+h!S,JAS;+A*S;’ 

On using the inequality 
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we obtain 

IGIG h I%I 
2+hlS,l’ 

But h ) S,] = 2 ] sin(qh/2)1< 2 whence we get the bound 

Thus, when the coefficients are chosen according to (12) and a = 1 S, 1, the pth wave 
component is reduced in magnitude by at least one-half. In order to reduce all wave 
components we use the sequence of acceleration parameters given by (5). In practice, 
a small number of parameters will usually suffice provided they cover the range 
between the maximum and minimum (i.e., between 2/h and 1) of the sequence (5). If 
we therefore take a sequence of say, six acceleration parameters, then all wave 
components and hence the complete error vector en should be reduced by at least one- 
half every six iterations. Thus if we define the average convergence rate as 

en 

( 1 

1/n 
lim 7 
n+m 

then this is bounded from above by 

(j)“” N 0.89. 

This ties in well with the observed residual reduction rate of about 0.87 which 
corresponds to a reduction of the residual by three orders of magnitude every 50 
iterations. 

THE AF3 SCHEME FOR MIXED FLOW 

Condition (12) is a useful guide to the construction of a successful approximate 
factorisation method. In this section we extend the factorisation to treat mixed flow 
conditions by introducing upwind differencing when the flow is locally supersonic. In 
order to simplify the presentation we first assume that the computational space has 
been obtained by a conformal mapping. The extension to a more general coordinate 
system then follows in a straightforward manner. 

Consider the conformal transformation 

z = f(z), 
where Z = X + iY is a point in the computational space and z = x + iv represents the 
corresponding point in physical space. If the mapping modulus is 

H= dz I I dz 



APPROXIMATE FACTORISATlON 9 

then the coefficients that appear in (6) are 

C, = C, = H’. 

Condition (12) therefore reduces to 

A, B, -=-= 
A, B, 

1 

which implies that A, = A 2 and B, = 8,. It follows that the factorisation should take 
the form 

with AB = HZ. If we now expand out this factorisation, the operators appearing in the 
first factor will act on B to give terms like 

When B is a function of X and Y, these extra terms will be non-zero and may well 
have an adverse effect on the convergence rate of the iterative scheme. In any case 
they introduce a 4, term in the associated time dependent equation and can therefore 
be expcted to cause instability in a region of supersonic flow. We therefore make the 
restriction that the coefficient of a in the second factor is a constant which, without 
loss of generality, we may take equal to unity. It follows that B = 1 and hence 
A = HZ so that the best approximate factorisation scheme for use on a mesh produced 
by a conformal mapping is 

In Eq. (14) we have introduced a relaxation factor O. It is found that a value for CJ 
slightly greater than one improves the convergence speed of this approximate 
factorisation scheme. A value of about 1.3 is generally used. The acceleration 
parameters can be chosen according to (5) but in practice the following parameter 
sequence 141 has proved to be very efiective: 

(k l)/(.V-- 1) 

2 k= ‘i . ..N. 

where a, = 1 and ah = 2/h. A value for N of either 6 or 8 is usually taken for the 
number of parameters in the sequence which is repeated in a cyclic fashion. 
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We now apply these ideas to the potential equation in its quasilinear form. In a 
transformed coordinate system the equation can be written as 

Aq& + By&, + Cq.&, + D = 0. (15) 

Under the conformal mapping considered above the coefficients are as follows: 

B = -2H* y, 
a 

where u and v are the velocity components in the X and Y directions, respectively. 
The sound speed is determined from Bernoulli’s equation 

2 a =-j$-+ y (1 - u* - v’). 

If we use central difference approximations to represent the various derivatives of # 
and thus construct a residual L$$ corresponding to Eq. (15) the factorisation 

(16) 

can be used to solve the equation provided the flow is subcritical. 
When regions of supersonic flow are present, computational stability requires the 

introduction of a rotated difference scheme [8]. This involves a combination of 
centrally differenced and upwind differenced second derivative terms chosen so that 
the numerical domain of dependence contains that of the differential equation. We 
therefore write 

A=A,+A,, B=B,+B,, c=c,+c,, 

where the subscript u refers to the contribution of a coefficient to the upwind 
differenced term and the subscript c denotes the centrally differenced contribution. 
The residual now contains both central and upwind differenced terms and the 
factorisation (16) can be modified as follows: 

s’, s’& 
-aC, dy -A, --A,$) [a+&) dt=aaL#$. 

AX2 
(17) 

This form applies when u, the velocity component in the X direction, is positive; 
forward differencing is used when u is negative. The upwind differencing in the above 
factorisation complicates the algorithm and, allowing for the possibility of both 
backward and forward differencing in the X direction, this requires the inversion of a 
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pentadiagonal matrix. If we drop one of the &. operators we obtain the alternative 
factorisation 

which only requires a tridiagonal matrix inversion. Removing one of the 5, operators 
has the effect of replacing the upwind formula 

A stability analysis indicates that this alternative form is stable and a comparison of 

the two factorisations for a number of numerical examples confirms that the 
convergence rates are similar. One also finds that the upwind differenced term in (18) 
introduces a QX, term in the associated time dependent equation. This is known to 
have a favourable influence on the stability of the iterative scheme when regions of 
supersonic flow are present 181. 

It should be noticed that the factorisation contains no upwind differenced term in 
the Y direction. Thus the upwind differencing for Ok,, is evaluated at the previous 
level n, viz., 

This does not appear to slow the convergence of the approximate factorisation 
scheme. presumably because the d,, term is sufficient to maintain stability. If desired. 
however. the factorisation can be modified to accommodate a forward difference 
approximation for O,., when L’, the velocity component in the Y direction. is negative. 
viz.. 

where E, is the shift operator defined by 

E,9ij = dij ~ i. 

The AF3 scheme described above has been used to solve the potential equation over 
a wide range of flow conditions and for various types of coordinate mesh. These 
include lifting aerofoil calculations where the mesh is generated by a conformal 
mapping to the inside of a circle 1101 and channel flow calculations using a sheared 
and hence non-orthogonal coordinate system.. 

Before showing some numerical results we complete our discussion of the AF3 
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scheme by examining the general case. Although our analysis was restricted to 
orthogonal transformations we assume that condition (12) still applies when the mesh 
is mildly non-orthogonal. As before it is necessary for the coefficient of a in the 
second factor of (7) to be a constant. Thus we take B, = 1 and ‘since 

A,B,=C, 

we require A, = C, . Condition (12) for optimum convergence then implies that 

A, 4 iC2 

-=B,=c-* A, 

Hence, A, = a and B, = dm. Under a general coordinate transformation 
we therefore require the following factorisation: 

We note that when the transformation is conformal we have 

C, = C, = H, 

and the factorisation then reduces to the previous case (14). The modification to treat 
transonic potential flow follows in an essentially identical manner to that described 
above for the conformal transformation. 

RESULTS 

We now present some comparisons between a successive line overrelaxation 
method and the AF3 scheme described above. The calculations are for lifting tran- 
sonic flow over an aerofoil using the nonconservative form of the potential equation. 
The coordinate mesh has been obtained by a conformal mapping of the region 
exterior to the aerofoil onto the inside of a circle [lo]. By taking equal increments Ar 
in the radial direction and A0 in the circumferential direction we obtain a mesh that is 
nonuniform in physical space, The relaxation code mentioned here is very similar to 
the well known Garabedian and Korn method [ 111 which also uses this coordinate 
mesh. It follows that the convergence information presented for the relaxation method 
can be regarded as typical of the behaviour that would be shown by the Garabedian 
and Korn aerofoil analysis code. 

The relaxation solutions were carried out in an optimum manner, first on a coarse 
mesh and then, using this result as the starting point for the final run, on a fine mesh 
of 161 x 32 points. In contrast, all AF calculations were computed on the fine mesh 
only. In fact, no significant advantage seems to be gained by using mesh refinement 
with AF. Some numerical experiments were initially carried out to determine the 
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x/c 

FIG. I. ~eiaxation computation of pressure distribution for K.~CA i)O]2, ,v, = 0.75, :r = 2”. 

endpoints (ri and ah to be used with the sequence of acceleration parameters. In fine 
with the modal analysis a value a, = 1 proved best. The precise value of ah does not 
appear to be critical provided it is of the same order as that indicated by the modal 
analysis. In these calculations a value for a,, greater than about 10 is appropriate. 
Increasing txh causes a slight deterioration in the convergence rate but enhances 
stability for Ilows containing strong shocks. A value a,, = 20 appears to give both fast 
and stable convergence over the range of flow conditions normally encountered. Ai! 

F~ti. 2. AF3 computation of pressure distribution for NACA 0012. ,M,, = 0.75. a = 2”. 
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AF computations presented here have therefore been computed using the following 
set of parameters, 

a1 (k- lVCN- I) a=ah - 
( ) 

> k= 1 -.a N, 
ah 

with ai = 1, ah = 20, N = 8 and with a relaxation factor 0 = 1.3. 
The first case we consider is the NACA 0012 aerofoil at a Mach number of 0.75 

and an incidence angle of 2O. Figure 1 compares the converged pressure distribution 
with the computed result after 125 and 425 iterations of the relaxation method. It is 
evident that the result after 125 iterations is some way off convergence and even after 
425 iterations the shock strength has still not reached its final converged value. It is 
interesting to contrast these results with those shown in Fig. 2 for AF3 after 5 and 
10 AF iterations (equivalent in computing time to 7 and 13 relaxation iterations, 

4 
, \ 
b 

Mesh 161 x 32 
e Relaxotlon 
o AF 3 

FIG. 3. Convergence histories for NACA 0012, M, = 0.75, a = 2’. 
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FIG. 4. Growth of circulation T for NACA 0012, M, = 0.75, a = 2”. 

respectively). After IQAF iterations the lower surface distribution is correct and the 
final shock position has been reached. After a further 10 AF iterations there is no 
pIottable difference between the computed pressure distribution and the converged 
result. 

One measure of the degree of convergence of an iterative scheme is given by the 

Mesh 161 x 32 

FIG. 5. Pressure distribution for NACA 0012, M, = 0.75, a = 33. 
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4 

Mesh 161x 32 
n Relaxation 

0 AF3 

12 
0 

FE. 6. Convergence histories for NACA 0012, M, = 0.75, a: = 3O, 

-o- --- 

-a--- 1 

Mesh 161x 32 

o AF3 
0 Relaxation 

0 50 100 150 200 250 300 350 LOO 150 500 550 600 
Equivalent relaxation iteraticm 

FIG. 7. Growth of circulation r for NACA 0012, M, = 0.75, a = 3”. 
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FIG. 8. Pressure distributions for Airfoil 75-06. Ii (KOKN 1). 

maximum value of the residual. Complete convergence corresponds to a maximum 
residual of zero although in practice round-off error sets a lower limit which will 
depend on the word length of the computer used. We have multiplied the maximum 
residual by (d13)~, where AB= 2n/160 is the increment in the computational variable 
0. Values of this convergence parameter are plotted against equivalent relaxation 
iterations in order to get a sensible comparison between the different methods. Thus. 
for example, Fig. 3 compares the convergence histories of relaxation and AF3. A 
value of IO-’ for the convergence parameter is usually necessary to guarantee an 
adequate level of convergence. According to this criterion, relaxation requires about 
700 iterations, while AF3 requires the equivalent of only 75 relaxation iterations. 

Another indicator of the convergence rate is the growth of circulation towards the 
fmal value. Figure 4 presents a comparison of the circulation growth for relaxation 
and AF3 again plotted in terms of equivalent relaxation iterations. AF3 quickly 
reaches the converged value in sharp contrast to the relaxation calculation. 

Figure 5 shows the pressure distribution for NACA 0012 at a Mach number of 
0.75 and an incidence angle of 3”. The presence of a strong shock on the upper 
surface for this case provides a severe test for any numerical method, but as shown in 
Fig. 6, AF3 rapidly achieves an adequate level of convergence. Figure 7 shows the 
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$ 
Mesh 161 x 32 
0 AF3 
[3 Relaxation 

I’ 

II :\ 
A AF3 

iI\ i’l 

+ Reloxotlon 

X AF3 

J ‘; :i, 

Y Relaxation 

) M,O-736,cOi 

) M,=0.746, cc=O1; 

1 Mm= 0.756, ce0.i 

FIG. 9. Convergence histories for Airfoil 75-06-12 (KORNI). 

circulation growth for this case and a particularly interesting feature is the behaviour 
of the relaxation method. Between about 200 and 400 iterations the circulation 
computed by the relaxation method remains remarkably constant but only reaches 
the final converged level much later. 

Finally, we present some comparisons for Airfoil 75-06-12, otherwise known as 
KORNl. Figure 8 shows the pressure distribution at an essentially shock free 
condition and two off design conditions. The convergence histories for AF3 and 
relaxation are shown in Fig. 9 and the superior performance of the AF scheme is 
again apparent. The convergence history for the 0.756 Mach number case indicates 
that convergence of the relaxation method is particularly lengthy and difficult. It is 
possible that a more judicious choice of the initial potential distribution might lead to 
better convergence. This dependence of relaxation convergence on a good choice of 
starting condition is, however, in sharp contrast to the AF scheme which converges 
equally well from most initial field distributions. 
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